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Determination of Elastic Constants of  Crystals from Diffuse Reflexions of  X-rays. 
I. Theory of Method 
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This paper describes the use of a Geiger-counter spectrometer for measuring the intensity of the 
very weak beams of X-rays diffusely reflected from crystals in directions close to, but not coincident 
with, those corresponding to Bragg reflexions. The reflected beam, being diffusely scattered, is 
limited by the dimensions of the various slits, and corrections are necessary to allow for the effects 
of divergence in the beams. Corrections for Compton scattering, for the effects of white radiation 
and for the mosaic texture of the crystal are also given. The theoretical principles by which the 
observations may be related to the elastic constants are discussed, and a particular method of 
selecting the experimental data to give the ratio of elastic constants of cubic crystals is indicated. 
The main part of the diffuse scattering is due to X-rays which have been scattered from only one 
elastic wave. A small part is due to X-rays which have been scattered from two elastic waves, and 
in an appendix is given the analysis by which a correction for the second-order diffuse scattering 
may be made. 

1. Introduction 

The principle of the present method of determining 
elastic constants is based on the theory of thermal 
diffuse reflexions put forward originally by Waller 
(1923, 1925, 1928). According to this theory the diffuse 
reflexions are produced as a result of the superposition 
of the thermal waves, generated by atomic vibrations, 
on the static periodicity of the crystal. As a result of 
this, the regular periodicity of the crystal is modulated 
by each thermal wave giving rise to a series of dynamic 
stratifications corresponding to each set of static lattice 
planes (hkl). These dynamic stratifications are inclined 
at small angles to their associated lattice planes. I t  is 
thus possible" to get a coherent reflexion from these 
dynamic stratifications, but at angles not satisfying the 
Bragg condition with respect to the static lattice planes. 
The strength of this dynamic reflexion obviously de- 
pends on the amplitude of modulation, that  is, on the 
amplitude of the corresponding thermal wave. The 
latter is again dependent on the frequency of the wave, 
being smaller the higher the frequency, owing to the 
partition of energy among the different modes of 
vibration. On the other hand, the geometry of the 
dynamic reflexion, i.e. the angles of incidence and re. 
flexion with respect to the static planes, depends on the 
wave-length and direction of propagation of the wave. 
Thus, by proper choice of the geometry, it is possible 
in principle to pick out for observation the dynamic 
reflexion due to a particular thermal wave having a 
definite wave-length and a definite direction of pro- 
pagation. From a measurement of the intensity of this 
reflexion, the frequency of the wave can be calculated. 

* Now at  the  Depa r tmen t  of Physics, Ind ian  Ins t i tu te  of 
Science, Bangalore, India.  

Combining the two measurements, the velocity of the 
wave can be obtained. If  now it is assumed that  these 
waves are the same as the elastic sound waves in the 
crystal, but of much higher frequency, then, knowing 
the velocity of propagation of the waves for different 
directions of travel, it is possible to calculate the elastic 
constants of the crystal by the established theory of 
elasticity. This is the main principle of the present 
method, though many other factors have to be con- 
sidered. 

2. Experimental  method 

The practical problem affecting all this work is the 
measurement of the ratio of the intensity of a strong 
incident beam of monochromatic X-rays to that  of a 
weak reflected beam of the same wave-length. 

The intensity of the X-ray beam was made as con- 
stant as possible by using a sealed copper-anode tube 
(CA-6G.E.C.) and a source of high tension operated 
by a machine-set depending on the frequency but not on 
the voltage of the mains supply. A bent-crystal mono- 
chromator (Wooster, Ramachandran & Lang, 1949) 
was used to produce a beam having a divergence of 30' 
and of high intensity. Harmonics of the characteristic 
radiation, of wave-lengths 1.54/2 and 1.54/3 A., were 
either eliminated by using a sufficiently low voltage on 
the X-ray tube or else allowed for in the final deter- 
mination of the diffuse intensity. The crystal was 
mounted on a goniometer (Wooster & Martin, 1936) 
(Fig. 1) consisting of a frame carrying two worm wheels 
B and C, B being geared to rotate at twice the speed of 
C. The upper worm wheel carries the Geiger-Miiller 
tube, D, in a screened box, E, and the lower worm wheel 
carries the crystal. The movement of the Geiger-Mfiller 
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tube can be coupled to tha t  of the crystal through a 2 : 1 
spur gearing so that  they may be moved together from 
one reflecting position to another. The crystal is mounted 
on a vertical circle, F,  within which is a standard genie- 
meter head, G, providing the usual two rotations and 
three translations, for setting the crystal. The adjust- 
ments possible with the vertical circle were found help- 
ful in making the various corrections described below 
as well as in bringing the crystal into the correct 
orientation. Two disks H, I,  each carrying six nickel 
absorption screens, were mounted between the mono- 
chromator and the first collimating slit, a, of the genie- 
meter. 

I t  was of great importance to determine the intensity 
of the incident beam with an accuracy of _+ 1%. This 
was achieved by a monitor consisting of an air-filled 
ionization chamber, and will be the subject of a separate 

Fig. 1. Component parts of Geiger-eounter spectrometer: 
_4, axis about which X-ray tube and monoehromatising 
erystM pivot; B, C, worm wheels supporting counter-box 
(E) and vertical circle (.F); D, Geiger-Miiller tube; G, gonio- 
meter head; H, I, disks supporting absorption screens; 
a, b, c, limiting slits. 

publication. An argon-filled Geiger-Miiller counter was 
used to record the intensity of the Bragg reflexion and 
also of the diffuse reflexion. A pressure of 60 cm. argon 
and a length of 17 cm. was used, and quenching was 
achieved with ethyl alcohol at  1.5 era. pressure. The 
plateau extended over 100 V. and the slope of the plateau 
was 1.5 ~/o for 100V. 

The electronic counting apparatus consisted of three 
parts, namely, a background suppressor, a scaler and 
an averaging meter. The X-ray tube was operated on 
unrectified a.c., and all the X-rays were produced and 
recorded during about one-third of each cycle. The 
background suppressor (Wooster et al., 1948) rendered 
the counting system inoperative for the two-thirds of 
each cycle during which X-rays were not produced. 
The background count was by this means reduced to 
one-third of its natural value, and the signal/noise ratio 
thereby increased by a factor of three. The scaler was 
based on the system described by Rotblat,  Sayle & 
Thomas (1948), though some of its parts were omitted. 

The averaging circuit was constructed according to the 
design given by Friedman (1945). The indication of 
the microammeter was not used for quanti tat ive 
measurement of intensity and was employed only in 
finding the crystal setting corresponding to a Bragg 
reflexion. 

3. The orientation of the crystal and the Geiger- 
Miiller tube 

In this work it is essential to measure the intensity of 
the X-rays" diffusely reflected from a known volume 
element in reciprocal space. This volume element is 
always near to a reciprocal point which corresponds to 
a strong Bragg reflexion; its position is determined by 
the setting of the crystal and the Geiger-Miiller tube, 
and its size by the divergence of the incident and re- 
flected beams. The angle of incidence is denoted by i 
and the angle of total deflexion of the X-rays by ¢, so 
that ,  when a Bragg reflexion occurs from a face parallel 
to the atomic planes, i = ½¢ = 0, where 0 is the usual 
Bragg angle. In  Fig. 2 Q represents a reciprocal-lattice 
point and Q' any point near to it. 0 is the origin of the 
reciprocal lattice, and reflecting circles of radii 1/h are 
drawn through 0 and Q, and 0 and Q' respectively. 

1/7 " \ 

Fig. 2. Two reflecting circles passing through reciprocal points 
Q, Q' and the corresponding angular relations. 

According to the usual construction for reflecting circles, 
the incident X-rays reflected from Q make an angle of 
½7r- 0 with OQ. The angle between the diameters of the 
reflecting circles passing through Q and Q' gives the 
change, 3i, in angle of incidence necessary to make Q' 
fall on the reflecting circle. In Fig. 2 circles with centres 
at 0 are drawn through Q and Q'. These represent the 
positions of all points in reciprocal space with the same 
two ¢ values as Q and Q', since the angle of deviation 
is given by the angle which the line joining Q or Q' to 
the centre of the corresponding limiting circle makes 
with the direction of the incident X-rays. I t  is therefore 
possible to construct a chart (Fig. 3) consisting of 
(a) circles passing through 0 having their diameters 
inclined at  any desired angle, e.g. 1 °, to one another; 
and (b) circles concentric about 0 having radii such tha t  
they correspond to deviations of any whole number of 
degrees. For a deviation of ¢ the radius is (2/h) sin ½¢ 
when the radius of the reflecting circle is 1/h. When 
such charts are superimposed on a drawing of the 
reciprocal lattice, based on the relation d*= 1/d and 
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drawn to the same scMe as the reflecting circle, the i, ¢ 
values of any point can be read off. These values can 
be transferred to the goniometer, and the intensity of 
the diffusely reflected X-rays then corresponds to the 
diffuse reflecting power of the particular point in 
reciprocal space chosen on the drawing. For con- 
venience the whole range of i, ¢ values is covered in 
three charts of which Fig. 3 represents the last; the 
ranges covered are ¢ = 20-47 °, 42-70 ° and 66-100 °. In 
addition to i and ¢, a third angular co-ordinate, ~f, is 
sometimes required. This angle, ~, gives the tilt  of the 
normal of the reflecting lattice planes to the horizontal 
plane, and is required in evaluating one of the cor- 
rections described below. When it is required to set the 
angle ~k accurately, the normal to the reflecting planes 
is made to lie in the plane of the vertical circle, which 
then bisects the angle between the incident and re- 
flected rays. Rotation of the vertical circle in its own 
plane then rotates the normal to the lattice planes 
through the angle defined as ~k. 
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4. M e a s u r e m e n t  o f  X-ray  intensif ies  

4.1. Measurement of the diffusely reflected beam 
The flux of diffusely reflected X-rays entering the 

Geiger-Miiller tube through the observing slit is of the 
order of 20-100 counts/min. The natural  background, 
after reduction by the apparatus described in § 2, was 
about 15 per min. To obtain an accurate estimate of 
the extra counts produced by the diffuse reflexions, the 
following procedure was adopted. Each observation 
was made over a period of 5 min., during which period 
the monitor was automatically switched on. This pair 
of readings from the scaler and the monitor was repeated 
over several 5 min. periods until more than a thousand 
counts had been made. Every few measurements the 
background count was taken over a 5 min. period. The 
mean of the background counts during a session was 
taken and subtracted from each of the observed counts 
to give the number of counts due to the diffuse re- 
flexions alone. The readings of the monitor were used to 
correct for variations in incident intensity, Since each 
observation of diffuse flux is based on not less than a 
thousand counts, the statistical accuracy was _+ 3 %. 

A C 4  

4.2. Absolute measurement of the incident flux 
To determine the elastic constants it is necessary to 

measure the absolute value of the incident flux. For 
this purpose the incident beam should be reduced to 
about the same intensity as the diffuse beam, since the 
Geiger-Miiller tube does not possess a linear response 
at  high counting rates. I t  is impracticable to carry out 
this reduction by means of absorption screens alone, as 
the reduction factor is of the order of 10 6 and small 
amounts of radiation of wave-lengths ½~, 1/~ , etc., in 
the monochromatized beam lead to large errors. Con- 
sequently, the integrated reflexion was used as an inter- 
mediate standard. For the material of the absorption 
screens nickel is preferable to aluminium. Although the 
mass absorption coefficient for Cu Ka, the wave-length 
of which radiation is denoted by h, is nearly the same 
for both nickel and aluminium, nickel absorbs X-rays 
of wave-length ½/l to the same extent as it absorbs 2, 
while aluminium absorbs ½h much less. The ratios of the 
mass absorption coefficients for nickel and alumluium 
for the wave-lengths ½h and ½/l are both approximately 
9.0. 

The integrated reflexion is given by the expression 
Jw/Io, where J is the ' integrated flux ', i.e. the total flux 
of X-rays reflected by the crystal as it is turned through 
the Bragg setting at  a constant angular velocity, w, with 
an incident flux of intensity I 0. The procedure adopted 
for introducing the integrated flux as an intermediate 
standard involved four separate measurements with 
the Geiger-Miiller tube. During the first two measure- 
ments the voltage on the X-ray tube was so low that  
radiation ½A was not excited; the third and fourth 
measurements were taken with the normal voltage on 
the X-ray tube. The measurements may be summarized 
as follows: 

Low voltage on X-ray tube: 

(1) Incident intensity, using absorption screens with 
a factor of up to 1000. 

(2) Integrated flux, using no absorption screens. 

High voltage on X-ray tube: 

(3) Integrated flux, using absorption screens having 
a factor of up to 1000. 

(4) Diffuse reflexion, using no absorption screens. 

The error in using the integrated flux as an inter- 
mediate standard is small and arises from the radiations 
½A and ¼/~ present in the beam at normal working 
voltages. The intensity of the radiation ½~ is irrelevant, 
since the absorption coefficient of nickel for this wave- 
length is the same as for radiation h. The intensity of 
the third and higher orders was 0.05 °/o of the total X-ray 
intensity, and a small correction has been made on this 
account. Because of the difficulties inherent in the use 
of absorption screens, the absolute measurements of the 
ratio of diffuse flux to the incident flux were probably 
correct only to 15 %. 

2 2  
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5. Corrections to the measurements 

5.1. Compton scattering 
Before applying the measured intensity of the diffuse 

flux to the calculation of the elastic constants certain 
corrections must be applied. The first of these is for the 
Compton scattering. All material gives rise to incoherent 
scattering of X-rays due to the Compton effect, and the 
Geiger-Miiller tube responds equally to this radiation 
as to the coherently reflected diffuse X-radiation. 
Fortunately, the variation of the intensity of Compton 
scattering with angle is slow compared with the corre- 
sponding variation of the radiation in which we are 
interested, so that  it can be allowed for by subtracting 
the same quantity from every measured value of the 
diffusing power round any given lattice point. The 
magnitude of this correction is small for most inorganic 
substances but becomes large for organic materials. The 
method of correcting for this constant contribution is 
described in § 9. 

5.2. Geometrical corrections 
The second set of corrections arises partly from the 

geometry of the apparatus and partly from the imper- 
fections of the crystM and the deviation from strictly 
monochromatic character of the X-ray beam. The 
geometrical corrections to the observed intensity are of 
two kinds: one, called a 'skew correction', is due to the 
angles of incidence and reflexion being unequal; the 
other, called a divergence correction, arises from the 
variation of the volume of reciprocal space which con- 
tributes to the reflexion as i and ¢ are varied. 

co 2"50 2"00 

1.0( ~ J'uu 
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(}50 0"60 

Fig .  4. C h a r t  o f  a b s o r p t i o n  c o r r e c t i o n  for  t h e  r a nge  ¢ = 20-47  °. 

I t  may be shown (Laval, 1939) that  if the observed 
diffuse intensity reflected within a given solid angle by 
a crystal plate, having the reflecting atomic planes 
parallel to the surface, is Id,, and the diffuse intensity 
which would have been observed from the same portion 
of reciprocal space ff the angles of incidence and re- 
flexion had been equal is I~, then 

1/1 sini 
I~=I~,.~ ~ + s i n ( C - i ) ) '  

When ¢ = 2i, obviously I~ = Ix,. The factor 

~{1 +sini /s in(¢-i)} 

is called t he '  skew correction'. Standard charts for this 
correction have been prepared giving the value of the 
correction as a function of i and ¢ (Fig. 4). They are 
constructed to cover the same three regions of reciprocal 
space as the i, ¢ charts on which they may be directly 
superposed. 

5.3. Divergence corrections 
These corrections arise from the fact that, owing to 

the divergence of the incident and reflected beams, a 
measurement of diffuse reflexion corresponds to a range 
of vMues of i and ¢, and not simply to the values set on 
the goniometer. Three divergences have to be taken into 
account: of the angle of incidence i; of the angle of 
deviation ¢; and of the vertical divergence, arising from 
the angular spread of the incident beam in the vertical 
direction and the finite vertical dimension of the 
observing slit. As a result of these divergences, the 
measured value of the diffuse structure intensity is a 
mean value over a small element of volume surrounding 
the reciprocM point being studied. The necessity of 
mal(ing these corrections has been pointed out by Olmer 
(1948). In the present investigation, however, the 
method of making the correction is somewhat different 
from that  adopted by 01mer. tIere, the corrections for 
the three factors mentioned above are made separately, 
and are denoted by 

/-correction, for divergence of angle of incidence; 
C-correction, for divergence of angle of deviation; 

and ~-correction, for vertical divergence. 

The principle by which each of the divergence cor- 
rections is made is the same and may be described as 
follows. Suppose that we require the ~-correction to 
any given observation of diffuse intensity. Keeping i 
and ¢ constant, the value of ~ is changed by tilting the 
crystM, about a horizontal axis lying in its own face, 
at various angles up to a few degrees on either side of its 
normM vertical setting. In each of these po.sitions the 
diffuse intensity is recorded. The crystal and a Geiger- 
Miiller tube are now set to allow the peak of the Bragg 
reflexion to enter the tube. Again keeping i and ¢ 
constant, ~ is varied over a sufficiently large range to 
include the entire Bragg reflexion. We can now plot 
two curves F(x) and 5P(8) giving the variation of the 
diffuse reflecting power with angle x and the variation 
of the intensity of the Bragg reflexion with the depar- 
ture, 8, from the normal Bragg setting. If  x 0 is the angle 
at which the diffuse reflexion is being observed, and if 

g(8) = ½{Fix° + 8)+ F(x0-8)}-F(x0), 
it can be shown by an elementary approximation that  
the correction to be subtracted from the observed value 
of F(Xo) is given by 

f:g(8) 
where A is the maximum value of 8 for which 5f(3) is 
greater than zero. This expression has been derived on 
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the assumption that  ~(3)  is the same for + 3 as for - 3, 
a condition which is usually fulfilled. A simplification 
can be introduced experimentally in the determination 
of the ~-correction. When diffuse reflexion is received 
from a region of reciprocal space surrounding a point A, 
Fig. 5, the vertical divergence permits reflexion from 
a certain line A1A 2 of the isodiffusion surface to be 
recorded. Other observations of the intensity of diffuse 
reflexion are made corresponding to points B and C. 
Since the isodiffusion surfaces are similar figures it is 
necessary to permit reflexion from all points on lines 
B 1B e and C t C 2 to be recorded if the same fractional error 
is to be introduced as was obtained at  point A, i.e. if 
the ~-eorrection is to remain the same. If  the distances 
QA, QB, QC are R, R', R" respectively, then 

AtA2 : B1B~ : C1C~=R : R' : R". 

Fig. 5. Diagram showing that for a constant ~-corroction the 
slit height must be proportional to the distance of the 
reciprocal point from the reciprocal-lattico point Q. 

Since the origin of the reciprocal lattice is a long way off 
in comparison with the length QA, the change in ~ in 
going from A t to A s must be proportional to A1A~, i.e. 
to R. The permitted change in ~ is also proportional to 
the slit height. Thus, to keep the ~-correction the same 
it is necessary to make the slit height, both in front of 
the crystal and in front of the Geiger-Miiller tube, 
proportional to the distance of the reciprocal point under 
observation from the nearest reciprocal-lattice point. 
When the/-correction is to be made, ¢ and ~ are kept 
constant, but  i is varied around the value corresponding 
to the region in reciprocal space which is being studied. 
In the second observation i is varied with the chamber 
set to receive the Bragg reflexion. Thus the two curves 
for .F(x) and 5P(3) are again obtained. A similar pro- 
cedure is adopted for finding the C-correction. Finally, 
all these corrections are added together. 

5.4. White.radiation and mosaic-structure corrections 

I t  will be convenient at  this point to introduce three 
terms, namely, ' relp ' ,  ' rel-veetor '  and ' rekha ' .  The 
term ' re lp '  signifies any reciprocal-lattice point; 'rel- 
vector '  refers to the line joining such a point to the 

origin of the reciprocal lattice; and ' rekha '  (Sanskrit = 
ray, to be pronounced r@kha) is a term applied to any 
line drawn through a reciprocal-lattice point. 

Unlike the skew correction and the divergence cor- 
rections, which have to be made for every measure- 
ment, the corrections considered in this subsection arise 
only for measurements made at  points along certain 
rekhas. Thus, if the crystal is appreciably mosaic, then 
the Bragg reflexion would extend over a range of angles 
on either side of the peak, e.g. along the arc BQB' in the 
section shown in Fig. 6. Thus, enhanced values would 
be observed for the diffuse flux for points lying on 
rekhas close to the rekha AQA'. If  this additional flux 
is not large compared with the true diffuse flux, then it 
can be eliminated by interpolation from measurements 
along neighbouring rekhas. This procedure of inter- 
polation is called the correction for mosaic structure. 

B A 

o. . . . . . . . .  c 

Fig. 6. Diagram showing the rekhas AQA" and CQG" affected 
respectively by mosaic structure and whito radiation. 

The white-radiation correction is important  for the 
rekha C'QC, i.e. the rekha lying along the rel-vector OQ, 
and is similar to the mosaic-structure correction, since 
it is intended to correct for a slightly enhanced diffuse 
reflexion observed for points along the rekha. The en- 
hancement is due to the small amount of white radiation 
diffusely reflected by the monochromatizing crystal into 
the collimator, which could, however, be specularly 
(Bragg) reflected by the crystal under study. The en- 
hancement is generally less than 10 %, and it can be 
corrected by interpolation from measurements at points 
such as C 1 , C 2, C s, C A (Fig. 6) lying on the same circle 
as C, but on rekhas at  _+ 10 ° and + 20 ° to the rel-vector, 
or at  other angles, as suitable. I t  is, however, important 
to make this correction for every measurement lying on 
this rekha. 

6. Theoretical principles 

The complete mathematical theory of diffuse reflexions 
was first given by Waller (1923, 1925, 1928). Since then, 
various papers have appeared on the subject, particu- 
larly since the experimental discovery of the pheno- 
menon in 1939 by workers in various parts of the world 
(for a review of the experiments, see Lonsdale (1943)). 
A review of the theoretical papers may be found in an 
article by Born (1943), where he has also given a com- 
plete derivation of the theory on the basis of quantum 
mechanics. This particular form of the theory is not, 
however, suited for the determination of elastic con- 
stants, for it aims at  expressing the intensity of diffuse 

22-2 
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reflexion in terms of the interatomic force constants. 
What is required for the present investigation is a 
formulation that connects the intensity with the macro- 
scopic elastic properties of the crystal. This has been 
done in papers by Laval (1939, 1943) and by Jahn 
(1942). Of these, the former discussed the problem for 
a general crystal having any number of atoms per unit 
cell, but did not connect the final formulae explicitly 
with the elastic constants. The latter has done this, but 
only for the special case of a monatomic lattice. Jahn 
has not, however, obtained formulae for absolute inten- 
sities of diffuse reflexion. In this paper, these two aspects 
of the theory have been combined, so that  the formulae 
are applicable to a crystal of any symmetry and having 
any number of atoms per unit/cell. 

The intensity of X-rays diffusely reflected by the 
crystal may be described by means of the quantity 
'diffuse structure intensity' defined as the ratio of the 
intensity of X-rays diffusely reflected per unit cell of the 
crystal per unit solid angle in the given direction to that  
scattered by a single free electron under the same con- 
ditions. I t  may be denoted by D. As is well known, ff 
unit intensity of polarized X-rays, having amplitude 
components T1 and p,. normal and parallel respectively 
to the plane of incidence, is incident on a free electron, 
then the intensity scattered by it at an angle ¢ per unit 
solid angle is given by e ~, where 

e~ 
e =  ~ 4(p~ + ~ c o s ~ ¢ ) .  (1) 

Obviously, the intensity of X-rays diffusely reflected by 
a unit cell of the crystal under the same conditions is 
De ~. The diffuse structure intensity, D, is thus analogous 
to the square of the structure amplitude, F ~', for Bragg 
reflexions. The intensity of X-rays diffusely reflected at 
any particular setting can be considered to be made up 
of different components called 'first order', 'second 
order', etc., according as it has interacted with one, 
two or more thermal waves respectively (Laval, 1939). 
The diffuse structure intensity of first, second, etc., 
order may be denoted by D 1, D 2, etc., respectively. 
These are of diminishing order of magnitude, and, in the 
present work, we shall consider only the first- and 
second-order components. 

Laval (1939) has shown that the first-order diffuse 
reflexion from an element of reciprocal space round a 
point P is produced only by elastic waves having their 
wave-vectors R~, equal to _+ QP, where Q is the relp 
nearest to P (Fig. 7). Similarly, it can be shown that 
the second-order diffuse refiexion from P is produced 
only by the combined action of pairs of waves, the wave- 
vectors R~, Rp of which add vectorially to +_ QP 
(Fig. 8). 

For a given wave vector R~, there are in the crystal 
a number of waves with different frequencies, which 
may be classified as 'acoustical' and 'optical '  waves. 
The former have low frequencies for long wave-lengths, 
while the latter have relatively high frequencies and are 

therefore much less effective in producing diffuse 
reflexions, owing to their small amplitudes. In what 
follows we shall consider theoretically only the effects 
of acoustical waves. The method of correcting for the 
effect of optical waves is indicated in § 9. 

The following expressions, valid for a region of 
reciprocal space close to a relp, may be derived for the 
components of the diffuse structure intensity from the 
equations of Laval (1939): 

DI= kT ] F T ] ~  ~ c°s~(q '~)  
T a=i pV~ ' (2) 

_--~-:1 I ~ / ~  T~ 1 cos ~(q, ~:) cos 2(q, ~p), (3) 
B Vo, Ro~ VIR i 

where k is Boltzmann's constant, r is the volume of the 
unit cell, F r is the structure amplitude at temperature 
T, p is the density, q is the rel-vector OQ and R the 
vector QP in Fig. 7, and ~ and V~ are respectively the 

P 

0 Q 

o¢ 

pr 

Fig. 7. Vector diagram showing connexion between q and R~. 

P 

6g 
o q -Q 

Fig. 8. Vector d iagram showing how second-order diffuse 
rofloxion occurs wi th  a proper  combinat ion  of  waves. 

amplitudes and velocities of the three acoustical waves 
having the wave-vector R. N is the number of unit cells 
in the crystal. Thus, for a definite direction of the wave- 
vector R, the intensity of first-order diffuse reflexion is 
centre-symmetrical with respect to the relp and is 
inversely proportional to R% This is so because ~ and 
V~ depend only on the direction of the wave-vector, 
but not its magnitude. 

The result that  D 1 is proportional to 1/R ~ for a 
particular rekha R is of fundamental importance to the 
present investigation. 

In view of the close relationship between the direction 
of a rekha and that of the elastic waves in the crystal, 
it is convenient to have the same axes of reference to 
define a rekha as those used for the elastic constants of 
the crystal. As is well known, a set of orthogonal co- 
ordinate axes is used in crystal elasticity even for non- 
cubic crystals, and the same axes may be used to define 
the orientation of the rekha. Thus, a rekha will be 
denoted by the symbol [ABC]hkl, where A, B, C are 
numbers proportional to the direction cosines with 
respect to the axes of reference and h, k, I are the indices 
of the relp with which it is associated. The direction 
cosines (u, v, w) would obviously be given by 

(A,B, C)/ ~I(A 2 + B ~ + C2). 
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In  general, the direction of a rekha is arbi trary and the 
parameters A, B, C are not rational. However, in a 
cubic crystal, ff the direction of a rekha happens to be 
parallel to a zone axis, then A, B, C are rational and are 
in fact proportional to the zone indices. 

When there is no ambiguity, the indices h, k, l may be 
dropped in describing a rekha. Also for brevity, 
[ A B C ] ~  may be written [R]~, i.e. the rekha parallel to 
R associated with the relp q. 

7. Evaluation of the rekha constant 

In equation (2) for D 1, all the terms except the 
summation are known or can be readily evaluated. The 

3 
calculation of the sum ~] cos ~ (q, ~) /p  V~ is a problem 

in crystal elasticity, and an explicit evaluation for cubic 
crystals has been obtained by Jahn (1942), following 
earlier work by Faxen (1923), Waller (1923, 1925) and 
others. The sum is a function of the elastic constants 
cr~ of the crystal and of the indices A, B, C, h, k, 1 of the 
rekha. For simplicity, we may write (2) as 

- - _ _  q2 
D1 leT i F  T i~ K[ABC]a~ (4) 

c o s  ~ ( q ,  ~) 
where K[ABC]~k~ = ~] (5) 

~=~ pV~ 

The function K[ABC]a~ is a characteristic constant of 
the rekha for the particular crystal and may be called 
the ' rekha constant ' ;  its value is given by 

K[ABC]h~ = P~(A-1)n + Q~(A-1)~ + R~(A-~)aa 

+ 2PQ(A-1)I~ + 2PR(A-1)lz  + 2QR(A-1)~a, (5a) 

where P, Q, R are the direction cosines of the rel-vector 
hlcl with respect to the orthogonal co-ordinates used to 
define the rekha, and (A-1)i~ are the elements of the 
matrix A -1 inverse to the matrix Aii , whose elements 
are given by 

Comparing the diffuse structure intensities of first 
and second order, the following facts may be noticed: 

(a) D~. varies as T ~, while D 1 varies as T. Thus, the 
second-order diffuse reflexion will be more important,  
the higher the temperature. 

(b) D~. and D 1 are both proportional to I FT [ 2, but the 
variation with q is different; D~ is proportional to q4, 
while D 1 varies as qg. Thus the second order is relatively 
more important for a higher relp (i.e. larger h]cl) than 
for a lower one. 

(c) Dg. varies as 1/R, while D 1 varies as 1/R 9. Thus, the 
second order is relatively less important  the closer is 
the point of observation to the associated relp. 

8. Intensity of diffuse reflexion from a 
crystal plate 

From the definitions of the previous sections, the energy 
diffusely reflected per unit cell of a crystal per unit 
solid angle per unit incident intensity is e2(D1 +Dg), if 
only diffuse reflexions of first and second order are taken 
into account. We shall now consider the flux of X-rays 
diffusely reflected i~om a crystal plate. Suppose that  
the incident X-rays make an angle i with the surface of 
the crystal plate and tha t  the diffusely reflected X-rays 
suffer a total  deviation ¢. If  I 0 is the total  flux of 
incident rays, and Ia. the observed intensity of diffuse 
flux, then a quantity,  I~, called the 'skew-corrected' 
diffuse flux, has already been given (§ 5.2): 

I,~=I,~,.~ 1~ sin-(-¢-i))" (8) 

I f  ~2 is the solid angle subtended at  the crystal by the 
observing slit before the Geiger-Miiller tube, then 

I,~ e~(DI + D~) g~ 
= ' ( 9 )  

where/t  is the linear absorption coefficient and T is the 
volume of the unit cell. 

A n = Cll u2 -Jc c66 v 2 2ff c55 w 2 ~t_ 2c56 vw ~t_ 2c15 w u  -~ 2c16 u v ,  

A ~ = c66 u S + c22v ~ + c44w ~ + 2c~avw + 2caeunt + 2c26 uv, 

A aa -- c55 u 2 + c44 v 2 + csa w ~ + 2ca4 vw + 2ca5 wu + 2c~5 uv, 

AI~ = c16 u 2 + c~ v ~ + c~s w 2 + (c25 + c46) vw + (c14 + %6) wu + (c1~ + c66) uv, 

A 13 --  c15 u2 ~t_ c46 v 2 _~_ c35 w 2 ~t_ (c36 _~_ c45) v w  .-~ (c13 -~- c55 ) w u  -{- (c14 -~- c56 ) u v ,  

A 23 = c56 u2 2ff c24 v 2 + c34 w 2 .~_ (c23 _~_ c44) vw -~- (c36 -~- c45 ) w u  -Jr (c25 -~- c46 ) 2tv. 

This expression can be simplified for crystals of higher 
symmetry,  for particular relps, and for special directions 
of the rekha. 

I t  is shown in the Appendix that  

n3 q4 
(kT)2 j F I ~ g'[ABC]hkz, (6) D 2 -  2 --~ 

3 cos 4 (q, ~ )  
where K'[ABC]hk~= ~ . (7) 

ce=l P - ~  

K'[ABC]hkz is a function only of the elastic constants 
and of the six indices of the rekha [ABC]hkl. 

9. The study of diffuse reflexion at points along a rekha 

As mentioned earlier, equation (4) gives the diffuse 
structure intensity at a point close to a relp. An im- 
provement in the correspondence between the observed 
and theoretical values is obtained by taking averages 
of the values for points P and P '  at equal distances on 
opposite sides of the relp along the same rekha. This is 
due to the fact that  a small constituent term of D1, not 
included in (4), changes sign on going from P to P ' ,  
whereas the main contribution depends only on R 2. In 
all the measurements discussed below such an average 
will be assumed to have been taken. 
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In the equation 
- - _ _  q2 

D~ - IcTT. lET 12-R -i K[ABC]~,kz, 

the right-hand side consists of four types of factor: 
(a) the factor leT~T, which is a constant for a particular 

crystal and for a fixed temperature; 
(b) the factor ] F T I ~ qg, which varies from relp to relp, 

but is a constant for a particular one; 
(c) the factor 1/R 9, which shows how the intensity of 

diffuse reflexion varies with the distance from the relp 
along any particular rekha; and 

(d) the factor K[ABC]hk~, which shows how the 
intensity varies with the direction of the rekha for 
constant R 2. 

Thus, if Q is the relp in Fig. 9, then along any one of 
the rekhas, such as AA', the intensity varies as 1/R 2. 

A" 

C 

D I 
1 B 

2 

). - ->R  

B t 

-A 

C t 

Fig. 9. Diagram showing several rekhas intersecting in Q and 
passing through two circles. 

On the other hand, the intensities at points of inter- 
section of one of the circles, e.g. 1, with the various 
rekhas will vary as the values of the constants K for 
these rekhas. Consequently, if we consider two points 
at the same distance along two rekhas [A1B 1C1]~,A z and 
[A~B~C2]h~. z associated with the same relp, then 

DI[A1B1C1]I, kz K[A1B1C1]h~z 
D 1[A2 B2 C~]~,~.z = K[A 2 B2 C2]h~.l" (1 O) 

This expression may be written 

A 1 B1 C1 
A2B2-C-2~h~ ~" 

Evidently, the quant i ty  [A1B1C1/A2B2C2]h~ l is a 
function only of the indices A1, B1, C1; A~, B2, C~; 
h, ]c, l of the two rekhas, and of the elastic constants, all 
other quantities in (4) dropping out completely. We 
may describe this function by the term 'K-rat io ' .  
Experimentally, this quant i ty  may be determined by 
measuring the values of D at two points at the same 
distance along the two required rekhas and finding their 
ratio. However, this requires a knowledge of the inten- 
sity of first-order diffuse reflexion due to acoustical 
waves only. The observed intensity has therefore to be 
corrected for the presence of other components, such as 

Compton scattering, fluorescent radiation, diffuse re- 
flexion of second order from acoustical waves and diffuse 
reflexion due to optical waves. 

The intensities of the Compton scattering, fluorescent 
radiation and scattering due to optical waves vary little 
over the region of reciprocal space included in the 
observations made about any one relp. Further,  such 
variation as there is can be eliminated by taking the 
mean value of the intensities of X-rays scattered from 
reciprocal volumes at equal distances on opposite sides 
of the relp. The value of I1, the diffuse intensity due to 
first-order scattering from the elastic waves, is found by 
plotting I s ,  the observed diffuse intensity, against 1/R% 
The points so plotted lie, within the accuracy of the 
measurement, on a straight line, which cuts the axis of 
I~ at a point corresponding to the constant contri- 
bution of the Compton, fluorescent and optical scat- 
tering. This quant i ty  can be subtracted from the 
observed intensity to give the sum of the intensities, 
11 and 12, due to first- and second-order elastic scatter- 
ing. The ratio of I~ to 11 can be shown to be 

12 ~3 K'[ABC]hk~ 
11- 2 kTq2R K[ABC]hkz" (11) 

I f  the observed diffuse intensity, after allowing for 
Compton and other constant contributions, is assumed 
to be entirely due to the first-order elastic scattering, 
preliminary values of the elastic constants may  be calcu- 
lated. These can be used to obtain K'[ABC]hkz and 
K[ABC]hkz and hence the ratio 12/11 . The correction to 
I~ on account of 19 can then be applied and a more 
accurate set of elastic constants obtained. I f  necessary 
this process of successive approximations may  be 
applied again. 

10. Optimum conditions for the investigations 
The first requisite is obviously that  the diffuse flux to be 
observed should be as large as possible. Since the diffuse 
structure intensity D 1 is proportional to qelF T [2, i.e. 
to I F~r I~/d ~, other conditions remaining the same, it is 
best to choose for s tudy the neighbourhood of those 
relps for which this quant i ty  is the largest. 

The convenient range of suitable Bragg angles is 
20-50 ° . The lower limit arises from the fact that. the 
skew correction for the outer circles becomes appre- 
ciably different from unity if the angle of reflexion is 
smaller than 20 °, and a slight missetting of the crystal 
is liable to produce large errors. The upper limit arises 
from two causes. The first is the mechanical limit to the 
movement of the instrument, which only goes up to 
¢ = 110 °, so that  0 should be less than 50 °. Secondly, the 
formulae of Laval, used in this paper, are based on the 
assumption that  the amplitudes of atomic vibration are 
small compared with the lattice spacing. The mean 
amplitude of thermal vibrations at room temperature is 
of the order of 0.2 A. for most crystals (Lonsdale, 1948). 
We may therefore assume that  1 A. is a safe lower limit 
for the lattice spacing. The Bragg angle corresponding 
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to 1 A. with C u K a  is 50 °, which is fortunately just  
within the limit set by the instrument. 

Considering next the wave-length of X-rays to be 
used, it is preferable to work with as long a wave-length 
as possible for several reasons. First, the scale of the 
reciprocal lattice is increased with a longer wave- 
length, so that ,  for the same angular separation from 
the Bragg setting, points in reciprocal space closer to the 
relp can be studied. Secondly, by using a longer wave- 
length, the lattice spacings of the planes for which the 
Bragg angle is between 20 and 50 ° can be made larger 
than the lower limit of 1 A. For instance, if Mo Ka is 
used, then for d to be greater than 1 A. the Bragg angle 
must be less than 25 ° , which is rather small; with 
Cu Ka, however, O can be as large as 50 ° under the same 
conditions. A third advantage of using a longer wave- 
length is tha t  the intensity of Compton radiation, which 
is important  with materials of low atomic number, is 
thereby reduced. The fourth consideration is concerned 
with the present set-up in which argon-filled Geiger- 
Miiller counters are used and in which the pressure of 
gas cannot conveniently exceed 1 atm. Consequently, 
to get a fairly good efficiency, wave-lengths much 
smaller than Cu Ka cannot be used. There is, of course, 
an upper limit to the wave-length also, of about 2A., 
set by absorption in air, etc. I t  would appear that  the 
K radiation of one of the elements Fe, Co, Ni, Cu is the 
most suitable for use; actually C u K a  radiation was 
employed. 

A P P E N D I X  

Intensity o f  the second-order diffuse reflexion 
from elastic waves 

I t  has been shown (Laval, 1939) that  the second-order 
diffuse structure intensity D 2 is given by the expression 

k2T 2 1 cos ~ (q, ~ )  cos 2 (q, ~p) (12) 
D2--2-r I Fr  E V=R,, VzRz z N  2 ~ ~ ~ ' 

where the summation is to be made over all pairs of 
acoustical waves for which the vectorial sum of the 
wave-vectors R~, Rp is equal to + QP, where QP is the 
vector joining the relp, Q, to the centre of the reciprocal 
volume element P, associated with the scattered 
radiation. 

Suppose tha t  D~ is to be evaluated for the point P in 
__...~ 

Fig. 10. Q is the relp and let QP = R, so that  all possible 
combinations of R~ and RZ satisfying R~ + Rp = R have 
to be taken into account. Since both R~ and RZ have 
to be equal to a vector within the first BriUouin zone of 
the crystal, the following construction can be made 
(Laval, 1939)" 

In Fig. 10, let Q1Q2QzQ4 be the first Brillouin zone 
around Q and let P1P2P3 P~ be a similar figure with P 

as centre. Then all R:  (e.g. QC) must have their termini 

C inside Q1Q~ Qa Q4, and similarly all R~ (e.g. CP) must 
have their origin C inside P~P.zPaPa, since they must 
end at P. To satisfy both conditions, C must lie within 

the volume common to both figures, shown shaded in 
Fig. 10. Consequently the summation in (12) has to be 
performed over this volume. Replacing the sum by an 
integral 

k2T2 
n 2 = o-Z-~21F T I ~ q a Z Z 

z . ,  k , -  a fl 

×JJJ V RI VpRp  
where tiT* is an element of volume of reciprocal space. 
The integral can in principle be evaluated by numerical 
or graphical methods, but  this is extremely laborious, 
and it is impracticable to undertake the evaluation for 
every rekha of a crystal tha t  is investigated. However, 
if some approximations are made, the expression may 
be integrated analytically. I f  the point P lies close to 
a relp, as is the case in our investigations, then D9 is in 
general less than 10 % of D 1. The use of rather crude 
approximations is therefore justified in evaluating D~, 
since the measurement of D 1 is itself expected to be 
accurate only to about 3 %. 

P3 

- -  Q3 

P1 - -  

Q, Q2 

Fig. 10. The a r e a  of reciprocal space (shown shaded) within 
which the  points  C can lie for the  second-order reflexion. 

Now, an appreciable part  of the integral (13) comes 
fl'om the region of reciprocal space close to the line QP 
in Fig. 10. This is because of the presence of the factor 
R~ R} in the denominator, which has a minimum value 
when R~ = Rp = ½R. Consequently, we may replace the 
numerators by the corresponding expression for the 
wave-vector R, and similarly the velocities V~ and VZ 
may also be replaced by the corresponding velocity fo,' 
the direction R. Representing the three waves for the 
wave-vector R by the indices 7 =  1,2, 3, we have 

k2T2 ~ c ° s 4 ( q ' ~ ' ) - - -  2 ~ ( ( ( - - - ~ 1  dr*, (14) JJJ R:R  
with the condition that  R~ + Rp-- R. Further,  when QP 
is small compared with the dimensions of the Brillouin 
zone, the integral may be extended to infinity so as to 
cover the whole of reciprocal space. This again intro- 
duces only a small error, as will be shown below. 

The integral in (14) may best be evaluated by taking 
spherical polar co-ordinates (r, 0, ¢) for the point C. 
Take Q as the origin and QP as the original position of 
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the radius vector, so tha t  the angle CQP is 0. Then the 
integral in (14) is equal to 

fofo; r ~ (r~_2rRcosO+R~)rsinOdrdOd~ " (15) 

where clearly R=QP.  Now 

1 ~ R ~ 
~/(rZ+2rRcosO+Rg)-n~__or--C~Tn(lZ) ( r> R) 

oo Tn 
and = ~] R-W~pn(/t ) ( r<R) ,  

n = 0  

where/z = cos 0 and p,(#) is the Legendre polynomial 
of order n (Jeffreys & Jeffreys, 1946). Using this sub- 
stitution, and the well-known integral 

_ P~(~)P.(~)d~--(2~+ 1--------~)~,~,~, 

we find tha t  expression (15) is equal to 

F I ?  1 r ~ ,/'~ 1 RZn "-I 
4rr~, o Z (2n+ l) R,7+~dr+jRE ( 2 n + l ) r ~ d r j .  (16) 

The two terms within the square brackets are equal, 

each being equal to R n--0 (2n+ l) ~' so that  (16) equals 

R n=0 (2n+ 1) e" (17) 

The integral (15) in fact extends only over the shaded 
volume in Fig. 10 and not over the whole of reciprocal 
space, as is supposed here. The effect of this may be 
estimated by considering what happens if the upper 
limit of r  is not infinity, but is equal to the dimensions of 
the Brillouin zone. Suppose, for example, that  this is 
five times the length R, then the second term of (16) 
will be reduced by about one-fifth, while the first term 
is unaffected, so that  the total integral is reduced by 
about 10 %. This error is not important,  considering the 
other approximations which have been made. 

1 3 ~  1 3 
Now n=oZ (2n+ 1)-----~-4n~_l_ ~-~--~(2),  

where ~(x) is the Riemann ~ function of (x). From Jahnke 
& Emde (1945), ~(2)=_~2, so that  the integral (15) is 
found to be 7ra/R, and 

D~= . (18) 
2 Tp ~ R ~=1 V~ 

Analogously to (5), we may define 

3 cos4 (q, g~) 
K'[ABC]hkz= a=x p~ V~ ' (19) 

so that  D 2 can be written in the form (6). 
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